Dona Fifi aos 19 anos.

Apostilas eletrônicas de Dona Fifi
ORIGEM dos ELEMENTOS


A formação dos elementos leves logo após o big bang
Os físicos afirmam que sabem bem direitinho o que aconteceu nos primeiros segundos e minutos após o big bang. Segundo eles, o universo, nesses instantes iniciais, era essencialmente simples e fácil de ser descrito, pois só continha partículas elementares livres e fótons, tudo em equilíbrio térmico. Se você tem curiosidade de saber o que aconteceu nesses instantes pós-parto, leia o livro "Os três primeiros minutos", de Steven Weinberg, muito bem cotado nas paradas de sucesso.

Já nossa narrativa pode começar depois desse terceiro minuto, pois só a partir desse instante os elementos começaram a se formar. George Gamow e seus parceiros inicialmente achavam que os núcleos de todos os elementos poderiam ter se formado logo após esse terceiro minuto, pois as condições de temperatura e pressão eram adequadas. Essas condições estão mostradas no gráfico abaixo.

Três minutos após o big bang o universo tinha uma temperatura de um bilhão de Kelvins. Era feito, praticamente, de nêutrons livres e fótons, em equilíbrio térmico. Só que um nêutron livre vive apenas cerca de 10 minutos antes de virar um próton. Desse modo, rapidamente o universo ficou cheio de nêutrons e prótons. Como a pressão era enorme, um nêutron podia reagir com um próton e formar um núcleo de deutério, que, como você sabe, é um isótopo do hidrogênio. A figura ao lado mostra alguns tipos de reações que aconteceram nesses minutos iniciais do universo. Como você vê, logo se formaram os núcleos de dois isótopos do hidrogênio, o deutério (d) e o trício (t), e de dois isótopos do hélio, o hélio-3 e o hélio-4. Esse último é nossa conhecida partícula alfa, que tem grande estabilidade. Além dessas reações, também podia ocorrer uma que formava um núcleo de lítio, com 3 prótons. Mas, sua freqüência era baixíssima, comparada com as quatro vistas ao lado. Todas essas reações liberam energia em forma de radiação gama.
Você poderia tomar gosto e sair formando outros núcleos, com 5 ou mais partículas. Só que a natureza tem seus truques e resolveu que um núcleo com 5 partículas é altamente instável e não sobrevive. O mesmo acontece se juntarmos dois núcleos de hélio para formar um núcleo de massa 8. Não existem núcleos de massa 8. Esse capricho da natureza azedou os cálculos de Gamow e sua gente. Simplesmente, não dá para formar núcleos além do hélio (e um pouco de lítio), nas condicões do big bang. E o resto, de onde vem? Como veremos na próxima apostila, o resto vem das estrelas.

Qualquer químico de meia tijela pode calcular quanto hélio, deutério e trício devem ter se formado nessas reações, desde que saiba quantos nêutrons e prótons estavam disponíveis três minutos após o big bang. É claro que esse número de nêutrons e prótons da sopa primordial é muito difícil de ser estimado mas, ainda assim, os números relativos dos núcleos leves podem ser facilmente calculados. Desse modo, o modelo do big bang fazia uma previsão muito restritiva: para cada 10 núcleos de hidrogênio deve haver um núcleo de hélio no universo. Em termos de massa, isso equivale a dizer que cerca de 25% da massa do universo deve ser de hélio.

Essa previsão é bastante restritiva. Se concordar com a observação experimental, o modelo ganha muita credibilidade. Se não, vai para a lata do lixo. Para alegria dos torcedores do big bang, a concordância é excelente, como mostra a figura ao lado, e é considerada como uma das mais fortes evidências da robustez do modelo.
Note que praticamente todo o hélio que há no universo foi gerado no big bang. Mas, parte do trício e do deutério gerados no big bang foi queimada no interior das estrelas. Realmente, a espectroscopia mostra que há deutério nas estrelas jovens e quase nenhum nas mais velhas. Esse ajuste foi levado em conta nos números da tabela ao lado.

A seguir, veremos como se formaram os outros elementos mais pesados que o hélio.


Apostila 4: A formação de elementos intermediários no centro das estrelas.

Apostila 5: Elementos pesados formados nas explosões das supernovas.

Apostila 6: Como George Gamow preferiu a liberdade.