( Parte da capa do "Diálogo sobre os Sistemas do Mundo", de Galileu Galilei, 1632. ) SEARA DA CIÊNCIA

AS SÉRIES DE FOURIER
Fourier e suas séries maravilhosas.
Jean Baptiste Joseph Fourier (1768-1830) viveu na época de Napoleão, para quem trabalhou na França e no Egito ocupado pelos franceses. Mas, seu nome foi imortalizado pelas séries trigonométricas que introduziu em 1807 e até hoje deslumbram os matemáticos, físicos, estatísticos e engenheiros. Essas séries são uma verdadeira dádiva para quem precisa descrever uma função mais ou menos complicada em uma forma simples de visualisar e manipular.

J. B. Joseph Fourier
A história das séries de Fourier ilustra como a solução de um problema físico acaba gerando novas fronteiras na matemática. Fourier foi levado a desenvolver suas séries ao estudar a propagação de calor em corpos sólidos. Admitindo que essa propagação deveria se dar por ondas de calor e levando em conta que a forma mais simples de uma onda é uma função senoidal, Fourier mostrou que qualquer função, por mais complicada que seja, pode ser decomposta como uma soma de senos e cossenos.

Para falar a verdade, a matemática de Fourier era meio capenga, sem o rigor que era exigido por seus contemporâneos como Lagrange e Laplace. Assim mesmo, ele conseguiu o apoio e admiração desses gigantes, além de obter resultados que escaparam pelos dedos de outros gênios como Bernouilli e Euler.

A história das séries de Fourier ilustra como a solução de um problema físico acaba gerando novas fronteiras na matemática. Fourier foi levado a desenvolver suas séries ao estudar a propagação de calor em corpos sólidos. Admitindo que essa propagação deveria se dar por ondas de calor e levando em conta que a forma mais simples de uma onda é uma função senoidal, Fourier mostrou que qualquer função, por mais complicada que seja, pode ser decomposta como uma soma de senos e cossenos.

Para falar a verdade, a matemática de Fourier era meio capenga, sem o rigor que era exigido por seus contemporâneos como Lagrange e Laplace. Assim mesmo, ele conseguiu o apoio e admiração desses gigantes, além de obter resultados que escaparam pelos dedos de outros gênios como Bernouilli e Euler.

Em um relato de uma técnica matemática não é possível evitar de todo o uso de fórmulas e equações. Sempre que possível, vamos usar recursos gráficos mas teremos de mostrar também um pouco do formalismo. Essas partes serão destacadas com esse fundo em azul mas não são indispensáveis e podem ser puladas sem comprometer a leitura do texto normal. Vale a pena, no entanto, tentar entedê-las.

Capítulo 2: O que é uma série de Fourier.

Capítulo 3: Valores médios de funções.

Capítulo 4: Calculando os coeficientes de uma série de Fourier.

Capítulo 5: Um exemplo prático: a onda quadrada.

Capítulo 6: Pacotes de onda.